
OOP Question Bank

1. Define Object Oriented Programming. (OOP)

Object-oriented programming (OOP) is a style of programming

characterized by the identification of classes of objects closely linked with

the methods (functions) with which they are associated. It also includes

ideas of inheritance of attributes and methods. It is a technique based on a

mathematical discipline, called “abstract data types,” for storing data with

the procedures needed to process that data. OOP offers the potential to

evolve programming to a higher level of abstraction.

2. List the main features of OOP.

Inheritance

Encapsulation

Abstraction

Polymorphism

Method Overriding

Method Overloading

Objects

Classes

3. Define the class

 In object-oriented programming, a class is a blueprint for creating objects

(a particular data structure), providing initial values for state (member

variables or attributes), and implementations of behavior (member

functions or methods).

4. Define polymorphism.

 Polymorphism is one of the core concepts of object-oriented programming

(OOP) and describes situations in which something occurs in several

different forms. In computer science, it describes the concept that you can

access objects of different types through the same interface. Each type can

provide its own independent implementation of this interface.

5. List the application of OOP.

 Computer graphic applications

https://brilliant.org/wiki/objects/
https://stackify.com/oops-concepts-in-java/
https://stackify.com/oops-concepts-in-java/
https://stackify.com/oops-concepts-in-java/

CAD/CAM software

Object-oriented database

User interface design such as windows

Real-time systems

Simulation and modeling

Artificial intelligence and expert systems

6. Define Object.

In OOP, Objects are the things you think about first in designing a program

and they are also the units of codes that are eventually derived from the

process.

7. List some of the special properties of constructor.

 -A constructor name must be the same as that of its class name -

Constructor cannot be inherited.

 -Constructor cannot be static

 -Constructor cannot be virtual

 -Constructor are called automatically when the objects are created

 -Constructor can have default arguments as other c++ functions

8. Define member function.

Member functions are operators and functions that are declared as
members of a class. Member functions do not include operators and
functions declared with the friend specifier. These are called friends of a
class.

9. Define destructor.

 A destructor is a member function that is invoked automatically when the

object goes out of scope or is explicitly destroyed by a cell to delete. A

destructor has the same name as the class, preceded by tilde (~).

10. Define pointer.

 A pointer is a variable that stores the memory address of an object.

Pointers are used extensively in both C and C++ for three main

purposes: to allocate new objects on the heap, to pass functions to

other functions, to iterate over elements in arrays or other data

structures.

11. Explain the constructor with its type.

 Constructor in C++ is a special method that is invoked automatically at the

time of object creation. It is used to initialize the data members of new

objects generally. The constructor in C++ has the same name as the class or

structure. Constructor is invoked at the time of object creation. It

constructs the values i.e. provides data for the object which is why it is

known as constructors.
<class-name> (list-of-parameters);

Types of Constructors

1. Default Constructors: Default constructor is the constructor which doesn’t

take any argument. It has no parameters. It is also called a zero-argument

con

2. Parameterized Constructors: It is possible to pass arguments to

constructors. Typically, these arguments help initialize an object when it is

created. To create a parameterized constructor, simply add

 parameters to it the way you would to any other

function.structure.

3. Copy Constructor:

A copy constructor is a member function that initializes an object using

another object of the same class. A detailed article on Copy Constructor.

12. Explain the single inherence with example.

Single Inheritance: In single
inheritance, a class is allowed to
inherit from only one class. i.e.
one subclass is inherited by one
base class only.
Syntax:

class subclass_name :

access_mode base_class

{

https://www.geeksforgeeks.org/c-internals-default-constructors-set-1/
https://www.geeksforgeeks.org/c-internals-default-constructors-set-1/
https://www.geeksforgeeks.org/copy-constructor-in-cpp/
https://www.geeksforgeeks.org/copy-constructor-in-cpp/

// body of subclass

};

#include<iostream> using

namespace std;

class Vehicle {

public:

Vehicle

() {

cout << "This is a Vehicle\n";

}

};

class Car : public Vehicle {

};

int

main() {

Car obj;

return 0;

}

13. Explain the concept of operator overloading.

In C++, we can make operators work for user-defined classes. This means

C++ has the ability to provide the operators with a special meaning for a

data type, this ability is known as operator overloading.

Example:

#include<iostream>

using namespace std;

class Com {

private: int

real, imag;

public:

Com(int r = 0, int i = 0) {real = r; imag = i;}

Comp operator + (Com const &obj) { Com

res;

res.real = real + obj.real; res.imag

= imag + obj.imag;

return res;

}

void print() { cout << real << " + i" << imag << '\n'; }

};

int main()

{

Com c1(10, 5), c2(2, 4);

Com c3 = c1 + c2;

c3.print();

}

14. Explain the accessibility mode.

 Data hiding is an important concept of Object-Oriented

Programming, implemented with these Access modifiers' help. It is also

known as the Access Specifier. Access Specifiers in a class decide the

accessibility of the class members, like variables or methods in other

classes.

1. Public Access Specifier:

This keyword is used to declare the functions and variables public,

and any part of the entire program can access it. The members and
member methods declared public can be accessed by other classes
and functions. The public members of a class can be accessed from
anywhere in the program using the (.) with the object of that class.

2. Private Access Specifiers:

The private keyword is used to create private variables or private

functions. The private members can only be accessed from within
the class. Only the member functions or the friend functions are
allowed to access the private data of a class or the methods of a
class.

3. Protected Access Specifiers:

The protected keyword is used to create protected variables or

protected functions. The protected members can be accessed

within and from the derived/child class.

Example:

#include <iostream> using

namespace std;

class MyClass {

public:

int x;

};

int main() {

MyClass myObj;

myObj.x = 15; cout <<

myObj.x; return 0;

15. Explain the concept of base class and derived class.

In the world of object-oriented programming languages, both base and

derived classes play an important role. The base class is the existing class

whereas the derived class is one that acquires the properties of a base

class. There are many differences between them, let’s explore some major

differences between a base class and a derived class.

What is a Base Class?

In an object-oriented programming language, a base class is an existing

class from which the other classes are determined and properties are

inherited. It is also known as a superclass or parent class. In general, the

class which acquires the base class can hold all its members and some

further data as well. Syntax: Class base_classname{ … }.

What is a Derived Class?

A derived class is a class that is constructed from a base class or an existing

class. It has a tendency to acquire all the methods and properties of a base

class. It is also known as a subclass or child class.

 Syntax: Class derived_classname : access_mode base_class_name

{ … }.

Example:

#include<iostream> using

namespace std;

class Vehicle {

public:

Vehicle()

{

cout << "This is a Vehicle\n";

}

};

class Car : public Vehicle {

};

int

main() {

Car obj;

return 0;

}

16. Explain the pointer in detail.

 ANS:

Pointers are symbolic representations of addresses. They enable programs

to simulate call-by-reference as well as to create and manipulate dynamic

data structures. Iterating over elements in arrays or other data structures is

one of the main use of pointers.

The address of the variable you’re working with is assigned to the pointer

variable that points to the same data type (such as an int or string).

Syntax:

datatype *var_name;

int *ptr; // ptr can point to an address which holds int data // C++

program to illustrate Pointers

#include <bits/stdc++.h>

using namespace std; void

geeks()

{ int var =

20; int*

ptr; ptr =

&var;

cout <<

"Value at

ptr = " <<

ptr <<

"\n"; cout

<< "Value

at var = "

<< var <<

"\n"; cout

<< "Value

at *ptr =

" << *ptr

<< "\n";

} int

main()

{

geeks

();

return

0; }

Output

Value at ptr = 0x7 e454c08cc

Value at var = 20

Value at *ptr = 20

17. Write a program to demonstrate friend function in C++.

ANS:

C++ Friend function

If a function is defined as a friend function in C++, then the protected and
private data of a class can be accessed using the function.

By using the keyword friend compiler knows the given function is a friend
function. For accessing the data, the declaration of a friend function should
be done inside the body of a class starting with the keyword friend.
Program
#include <iostream> using namespace std; class base { private: int
private_variable;

protected:

int protected_variable;

public:

base()

{ private_variable = 10;

protected_variable = 99;

} friend void friendFunction(base& obj);

};

void friendFunction(base& obj)

{ cout << "Private Variable: " << obj.private_variable

<< endl; cout << "Protected Variable: " <<

obj.protected_variable;

} int

main()

{ base object1;

friendFunction(object1);

return 0;

}

OUTPUT:

Private Variable: 10

Protected Variable: 99

18. Write a program to demonstrate operator overloading.

 ANS:

#include <iostream> using

namespace std; class

OperatorOverload {

private:

int x;

public:

OperatorOverload() : x(10) {}

void operator ++() { x = x + 2;

} void Print() { cout << "The

Count is: " << x;

}

};

int main() {

OperatorOverload ov;

++ov;

ov.Prin

t(); return

0; }

19. Differentiate public and private inheritance with the help of example.

ANS:

Public Private

All the class members declared under
public will be available to everyone.

The class members
declared as private can be
accessed only by the
functions inside the class.

The data members and member
functions declared public can be
accessed by other classes too.

Only the member functions
or the friend functions are
allowed to access the private
data members of a class.

The public members of a class can
be accessed from anywhere in the
program using the direct member
access operator (.) with the object of
that class.

They are not allowed to be
accessed directly by any
object or function outside the
class.

Example:

#include <iostream> using

namespace std;

class Circle {

private: double

radius;

public:

void compute_area(double r)

{ radius =

r;

double area = 3.14 * radius * radius; cout

<< "Radius is: " << radius << endl; cout <<

"Area is: " << area;

}

};

int

main() {

Circle obj;

obj.compute_area(1.5); return

0;

}

20. Explain the accessing array using pointer.

 A Pointer is a variable that stores the memory location or address of an

object or variable. In other words, pointers reference a memory location,

and obtaining the value stored at that memory location is known as

dereferencing the pointer.

An Array is the collection of homogeneous elements stored in contiguous

memory blocks. So, elements in an array can be accessed using a pointer.

Access elements using Pointer

Pointer has the capability to store the address, So, we can store the address

of the first element of the array and then traverse the pointer till we reach

the end element.

Methods to store the address of the first elements of the array are

mentioned below:

int *ptr = arr;

int *ptr =

&arr[0];

Example:

#include <iostream> using

namespace std;

int main()

{

int arr[5] = { 6, 2, 5, 7, 4 };

int* ptr = &arr[0];

for (int i = 0; i < 5; i++) {

cout << "Value of" << i << " arr[" << i << "] is "

<< *(ptr + i) << endl; cout <<

"Address of " << *(ptr + i) << " is "

<< ptr + i << endl

<< endl;

}

retur

n 0;

}

Output:

Value of0 arr[0] is 6

Address of 6 is 0x7 c9de51fb0

Value of1 arr[1] is 2

Address of 2 is 0x7 c9de51fb4

Value of2 arr[2] is 5

Address of 5 is 0x7 c9de51fb8

Value of3 arr[3] is 7

Address of 7 is 0x7 c9de51fbc

Value of4 arr[4] is 4

Address of 4 is 0x7 c9de51fc0

21. Explain the function overloading with the help of example.

ANS:

Function overloading is a feature of object-oriented programming where

two or more functions can have the same name but different parameters.

When a function name is overloaded with different jobs it is called Function

Overloading. In Function Overloading “Function” names should be the same

and the arguments should be different. Function overloading can be

considered as an example of a polymorphism feature in C++.

The parameters should follow any one or more than one of the following

conditions for Function overloading:

● Parameters should have a different type

● Parameters should have a different number

Syntax:

add(int a, int b) add(double

a, double b) Example:

#include <iostream> using

namespace std;

void add(int a, int b)

{

cout << "sum = " << (a + b);

}

void add(double a, double b)

{ cout << endl << "sum = " << (a + b);

} int

main()

{ add(10, 2);

add(5.3,

6.2);

return 0;

}

Output

sum = 12

sum

=11.5

22. Explain the concept of this pointer.

 ANS:

In C++ programming, this is a keyword that refers to the current instance of
the class. There can be 3 main uses of this keyword in C++.

● It can be used to pass the current object as a parameter to another

method.

● It can be used to refer to the current class instance variable.

● It can be used to declare indexers.

Example:

#include<iostream> using

namespace std; class Test

{

privat

e: int

x;

public

:

void setX (int x)

{ this->x = x;

}

void print() { cout << "x = " << x << endl; }

};

int

main() {

Test obj;

int x =

20;

obj.setX(

x);

obj.print

(); return

0;

}

Outpu

t: x =

20

23. Explain new and delete keyword for memory management.

ANS: Dynamic memory allocation in C/C++ refers to performing memory

allocation manually by a programmer. Dynamically allocated memory is

allocated on Heap, and non-static and local variables get memory allocated

on Stack. new operator:

 The new operator denotes a request for memory allocation on the Free Store.
If sufficient memory is available, a new operator initializes the memory and
returns the address of the newly allocated and initialized memory to the
pointer variable.

 Syntax to use new operator:

pointer-variable = new data-type;

delete operator:

Since it is the programmer’s responsibility to

 deallocate dynamically allocated memory, programmers are provided a

delete operator in C++ language.

Syntax:

// Release memory pointed by pointer-variable delete

pointer-variable;

Example:

#include <iostream>

using namespace std int

main()

{ int size; int *arr = new int[size];

cout<<"Enter the size of the array : ";

std::cin >> size; cout<<"\nEnter the

element : "; for(int i=0;i<size;i++)

{

cin>>arr[i

];

} cout<<"\nThe elements that you have entered are :";

for(int i=0;i<size;i++)

{

cout<<arr[i]<<","

;

} delete

arr;

return

0;

}

24. Write a C++ program demonstrating use of the pure virtual function

with the use of base and derived classes.

#include <iostream>

{

public:

virtual void display()

{ cout << "Base class is invoked"<<endl; }

};

class B:public A

{

public:

void display()

{ cout << "Derived Class is invoked"<<endl; }

};

int main()

{

A* a; B b;

a = &b; a-

>display();

}

25. Explain the Exception Handling with an example.

Exception Handling in C++ is a process to handle runtime errors. We
perform exception handling so the normal flow of the application can be
maintained even after runtime errors.
In C++, an exception is an event or object which is thrown at runtime. All
exceptions are derived from the std::exception class. It is a runtime error
which can be handled. If we don't handle the exception, it prints an
exception message and terminates the program.

 C++ Exception Handling Keywords

In C++, we use 3 keywords to perform exception handling:

● try

● catch, and

● throw

Example:

#include <iostream> using

namespace std; int main()

{ int x = -1; cout << "Before

try \n"; try { cout <<

"Inside try \n"; if (x < 0)

{ throw

x;

cout << "After throw (Never executed) \n";

} } catch (int x) { cout <<

"Exception Caught \n";

}

cout << "After catch (Will be executed) \n"; return 0;

}

Output:

Before try

Inside try

Exception Caught

After catch (Will be executed)

26. Explain the File Handling in OOP.

 ANS:

File handling is used to store data permanently in a computer. Using file
handling we can store our data in secondary memory (Hard disk).

How to achieve the File Handling

For achieving file handling we need to follow the following steps:-

STEP 1-Naming a file

STEP 2-Opening a file

STEP 3-Writing data into the file STEP 4-

Reading data from the file STEP 5-

Closing a file.

Below are three stream classes of the fstream library for file

handling in C++ that are generally used for file handling in C++.

ofstream

The ofstream is derived from the ostream class. It provides the

output stream to operate on file. The output stream objects can be
used to write the sequences of characters to a file. This class is
declared in the fstream header file.

ifstream

The ifstream is derived from the istream class. It provides the input

stream to operate on file. We can use that input stream to read

from the file. This class is declared in the fstream header file.

fstream

The fstream is derived from the iostream class, and the iostream is

further derived from the istream and ostream classes. It provides
the input as well as output streams to operate on file.

Example:

#include <iostream>

#include <fstream>

using namespace std; int

main () {

ofstream filestream("testout.txt"); if

(filestream.is_open())

{ filestream << "Welcome to javaTpoint.\n";

filestream << "C++ Tutorial.\n";

filestream.close();

} else cout <<"File opening is fail.";

return 0;

}

27. Write down the program to demonstrate static keyword in c++.

#include <iostream>

class MyClass {

public:

 static int staticVar; // static variable declaration

 int nonStaticVar; // non-static variable declaration

 MyClass() {

 staticVar++; // increment static variable in constructor

 nonStaticVar++; // increment non-static variable in constructor

 }

 static void printStaticVar() {

 std::cout << "Static variable value: " << staticVar << std::endl;

 }

 void printNonStaticVar() {

 std::cout << "Non-static variable value: " << nonStaticVar << std::endl;

 }

};

int MyClass::staticVar = 0; // static variable definition

int main() {

 MyClass obj1;

 MyClass obj2;

 MyClass::printStaticVar(); // call static function using class name

 obj1.printNonStaticVar(); // call non-static function using object

 obj2.printNonStaticVar(); // call non-static function using object

 return 0;

}

